

Certificate of compliance

Applicant: SMA Solar Technology AG

Sonnenallee 1 34266 Niestetal **Germany**

Product: Grid-tied photovoltaic (PV) inverter

Model: SB1.5-1VL-40

SB2.0-1VL-40 SB2.5-1VL-40

Use in accordance with regulations:

Automatic disconnection device with single-phase mains surveillance in accordance with Engineering Recommendation G98/1 for photovoltaic systems with a single-phase parallel coupling via an inverter in the public mains supply. The automatic disconnection device is an integral part of the aforementioned inverter. This serves as a replacement for the disconnection device with isolating function that can access the distribution network provider at any time.

Applied rules and standards:

Engineering Recommendation G98/1-4:2019

Requirements for the connection of Fully Type Tested Micro-generators (up to and including 16 A per phase) in parallel with public Low Voltage Distribution Networks

DIN V VDE V 0126-1-1:2006-02 (4.1 Functional safety)

Automatic disconnection device between a generator and the public low-voltage grid

At the time of issue of this certificate the safety concept of an aforementioned representative product corresponds to the valid safety specifications for the specified use in accordance with regulations.

Report number: 14TH0397-G98/1-4_0 Certification program: NSOP-0032-DEU-ZE-V01

Certificate number: U19-0479 Date of issue: 2019-08-20

Certification body Bureau Veritas Consumer Products Services Germany GmbH accredited according to DIN EN ISO/IEC 17065

A partial representation of the certificate requires the written approval of Bureau Veritas Consumer Products Services Germany GmbH

Appendix C Type Test Verification Report

Extract from test report according to the Engineering Recommendation G98/1

Nr. 14TH0397-G98/1-4 0

Type Approval and declaration	Type Approval and declaration of compliance with the requirements of Engineering Recommendation G98/1.							
PGM Technology	Photovoltaic inverter	Photovoltaic inverter						
Manufacturer	SMA Solar Technology AG							
Address	Sonnenallee 1 34266 Niestetal Germany	34266 Niestetal						
Tel	+49 5619522-0	Fax:	+49 5619522-100					
Email	info@SMA.de	Website:	www.SMA.de					
			·					
Rated values	SB1.5-1VL-40	SB2.0-1VL-40	SB2.5-1VL-40					
Maximum rated capacity	1,5 kW	2,0 kW	2,5 kW					
Rated voltage	230V	230V						
Firmware version	Beginning with V3.0.1.R	Beginning with V3.0.1.R						
Measurement period:	2018-07-10 to 2018-07-11, 201	9-06-24 to 2019-07-31						

Description of the structure of the power generation unit:

The power generation unit is equipped with a PV and line-side EMC filter. The power generation unit has no galvanic isolation between DC input and AC output (transformer). Output switch-off is performed with single-fault tolerance based on two seriesconnected relays in line and neutral. This enables a safe disconnection of the power generation unit from the network in case of error.

Differences between Generating Units:

The models SB1.5-1VL-40, SB2.0-1VL-40 and SB2.5-1VL-40 are based on the same hardware platform, use the same control unit and software.

The above stated Generating Units are tested according the requirements in the Engineering Recommendation G98/1. Any modification that affects the stated tests must be named by the manufacturer/supplier of the product to ensure that the product meets all requirements of the Engineering Recommendation G98/1.

Appendix C Type Test Verification Report

Extract from test report according to the Engineering Recommendation G98/1

Nr. 14TH0397-G98/1-4 0

Operating Range.	
Connection:	Always connected
Limit:	Always connected
Test 1	Voltage = 85% of nominal (195,5 V) Frequency = 47.5 Hz Power Factor = 1 Period of test 90 minutes
Connection:	Always connected
Limit:	Always connected
Test 2	Voltage = 110% of nominal (253 V) Frequency = 51.5 Hz Power Factor = 1 Period of test 90 minutes
Connection:	Always connected
Limit:	Always connected
Test 3	Voltage = 110% of nominal (253 V) Frequency = 52.0 Hz Power Factor = 1 Period of test 15 minutes
Connection:	Always connected
Limit:	Always connected

Protection. Voltage tests.

Phase 1

Phase 1						
Function	Set	Setting		test	No trip test	
	Voltage [V]	Time delay [s]	Voltage [V]	Time delay [s]	Voltage / time	Confirm no trip
U/V	184	2,5	184,2	2,527	188V / 5s	No trip
					180V / 2,45s	No trip
O/V stage 1	262,2	1,0	263,0	1,028	258,2V 5,0s	No trip
O/V stage 2	273,7	0,5	274,9	0,530	269,7V 0,95s	No trip
					277,7V 0,45s	No trip

Note. For Voltage tests the Voltage required to trip is the setting $\pm 3,45$ V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ± 4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

Appendix C Type Test Verification Report

Extract from test report according to the Engineering Recommendation G98/1

Nr. 14TH0397-G98/1-4 0

Protection. Freque	Protection. Frequency tests.							
Function	Set	ting	Trip	test	No trip	No trip test		
	Frequency [Hz]	Time delay [s]	Frequency [Hz]			Confirm no trip		
U/F stage 1	47,5	20	47,49	20,072	47,7Hz / 30s	No trip		
U/F stage 2	47	0,5	46,99	0,574	47,2Hz / 19,5s	No trip		
					46,8Hz / 0,45s	No trip		
O/F stage 2	52	0,5	52,00	0,578	51,8Hz / 120s	No trip		
					52,2Hz / 0,45s	No trip		

Note. For Frequency Trip tests the Frequency required to trip is the setting ± 0.1 Hz. In order to measure the time delay a larger deviation than the minimum required to operate the projection can be used. The "No-trip tests" need to be carried out at the setting ± 0.2 Hz and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

Protection. Loss of Mains.							
Inverters tested according to BS EN 62116.							
Balancing load on islanded network 33% of -5% Q 66% of -5% Q 100% of -5% P 33% of +5% Q 66% of +5% P Test 22 Test 12 Test 5 Test 31 Test 21 Test 10							
Trip time. Ph1 fuse removed [s]	0,372	0,372	0,398	0,378	0,380	0,385	

Appendix C Type Test Verification Report

Extract from test report according to the Engineering Recommendation G98/1

Nr. 14TH0397-G98/1-4_0

Protection.	Do connoc	tion	timor
Protection.	Re-connec	tion	timer.

Test should prove that the reconnection sequence starts in no less than 20 seconds for restoration of voltage and frequency to within the stage 1 settings of table 2.

within the stage 1 settings of table	•					
	C	ver Vo	tage			
Time delay	/ setting			Measured delay		
209		23,45				
	U	nder Vo	ltage			
Time delay setting Measured delay						
209	3			23,44		
	Ov	er Freq	uency			
Time delay	/ setting		Measured delay			
209	3		28,64			
	Und	der Fre	quency			
Time delay	/ setting			Measured delay		
209	3			28,96		
	Checks on no reconnection when voltage or frequency is brought to just outside stage 1 limits of table 1.					
	At 266,2V At 180,0V At 47,4Hz At 52,1					
Confirmation that the Generating Unit does not reconnect.	No reconnection	No	No reconnection No reconnection No reconnection			

Protection. Frequency change, Stability test.							
	Start Frequency [Hz]	Change	Test Duration	Confirm no trip			
Positive Vector Shift	49,5	+50 degrees		No trip			
Negative Vector Shift	50,5	-50 degrees		No trip			
Positive Frequency drift	49,0 to 51,0	+0,95Hz/sec	2,1s	No trip			
Negative Frequency drift	51,0 to 49,0	-0,95Hz/sec	2,1s	No trip			

Limited Frequency Sensitive Mode – Over Frequency								
1-min mean value [Hz]:	a) 50,00	b) 50,45	c) 50,70	d) 51,15	e) 50,70	f) 50,45	g) 50,00	
1. Measurement a) to g): Active power output > 80% Pn								
Frequency [Hz]:	50,00	50,45	50,70	51,14	50,70	50,45	50,00	
Pexpected [kW]:	N/A	2,46	2,40	2,29	2,40	2,46	N/A	
P _{measured} [kW]:	2,51	2,47	2,35	2,12	2,35	2,48	2,51	
2. Measurement a) to g): Active	power outpu	t 40% and 60	% after freez	ing > 80% Pn				
Frequency [Hz]:	50,00	50,45	50,70	51,14	50,70	50,45	50,00	
P _{expected} [kW]:	N/A	1,23	1,20	1,15	1,20	1,23	N/A	
P _{measured} [kW]:	1,25	1,24	1,18	1,07	1,18	1,24	1,37	

Appendix C Type Test Verification Report

Extract from test report according to the Engineering Recommendation G98/1 Nr. 14TH0397-G98/1-4_0

Output Power with falling Frequency						
5-min mean value (each)	a) 50 ± 0,01 Hz	b) - 0,4 to - 0,5 Hz	c) - 2,4 to - 2,5 Hz			
Frequency [Hz]:	50,00	49,50	47,6			
Active power [W]:	2,51	2,51	2,51			
ΔP/PM [%] per 1 Hz:			N/A			

Appendix C Type Test Verification Report

Extract from test report according to the Engineering Recommendation G98/1

Nr. 14TH0397-G98/1-4_0

Power Quality. Harmonics.

SB2.5-1VL-40

Phase 1

Generatii	ng Unit rating per pha	ise (rpp)				
	At 45-55% of ra 1,25 k	-		100% of rated output 2,50 kW		
Harmonic	Measured Value (MV) in [A]	Measured Value (MV) in [%]	Measured Value (MV) in [A]	Measured Value (MV) in [%]	Limit in BS EN61000-3- 2 in Amps	Higher limit fo odd harmonic 21 and above
2nd	0,020	0,089	0,025	0,111	1,080	
3rd	0,048	0,213	0,096	0,426	2,300	
4th	0,003	0,013	0,002	0,009	0,430	
5th	0,029	0,129	0,035	0,155	1,140	
6th	0,003	0,013	0,002	0,009	0,300	
7th	0,019	0,084	0,023	0,102	0,770	
8th	0,002	0,009	0,002	0,009	0,230	
9th	0,014	0,062	0,015	0,067	0,400	
10th	0,002	0,009	0,002	0,009	0,184	
11th	0,012	0,053	0,009	0,040	0,330	
12th	0,001	0,004	0,002	0,009	0,153	
13th	0,012	0,053	0,011	0,049	0,210	
14th	0,001	0,004	0,001	0,004	0,131	
15th	0,011	0,049	0,010	0,044	0,150	
16th	0,001	0,004	0,001	0,004	0,115	
17th	0,010	0,044	0,010	0,044	0,132	
18th	0,001	0,004	0,001	0,004	0,102	
19th	0,008	0,035	0,007	0,031	0,118	
20th	0,001	0,004	0,001	0,004	0,092	
21th	0,007	0,031	0,007	0,031	0,107	0,160
22th	0,001	0,004	0,001	0,004	0,084	
23th	0,006	0,027	0,007	0,031	0,098	0,147
24th	0,001	0,004	0,001	0,004	0,077	
25th	0,005	0,022	0,008	0,035	0,090	0,135
26th	0,001	0,004	0,001	0,004	0,071	
27th	0,003	0,013	0,008	0,035	0,083	0,124
28th	0,001	0,004	0,001	0,004	0,066	
29th	0,003	0,013	0,007	0,031	0,078	0,117
30th	0,001	0,004	0,001	0,004	0,061	
31th	0,002	0,009	0,006	0,027	0,073	0,109
32th	0,001	0,004	0,001	0,004	0,058	
33th	0,002	0,009	0,007	0,031	0,068	0,102
34th	0,001	0,004	0,001	0,004	0,054	
35th	0,001	0,004	0,007	0,031	0,064	0,096
36th	0,001	0,004	0,001	0,004	0,051	
37th	0,002	0,009	0,007	0,031	0,061	0,091
38th	0,001	0,004	0,001	0,004	0,048	
39th	0,004	0,018	0,007	0,031	0,058	0,087
40th	0,001	0,004	0,001	0,004	0,046	

Appendix C Type Test Verification Report

Extract from test report according to the Engineering Recommendation G98/1

Nr. 14TH0397-G98/1-4_0

Power Quality. Power factor.								
Output power	216,2V	230V	253V	Measured at three voltage levels and at full				
20%	0,999	0,999	0,999	output. Voltage to be maintained within ±1,5% of the stated level during the test.				
50%	0,999	0,999	0,999	, and the second				
75%	0,999	0,999	0,999					
100%	0,999	0,999	0,999					
Limit	>0,95	>0,95	>0,95					

		Starting			Stopping				Running		
	dmax	d	lc	d(t)	dmax	d	С	d(t)	Pst	Plt 2 hours	
Measured values at test impedance	0,0%	0,0	0%	0%	0,0%	0,0)%	0%	0,07	0,07	
Limits set under BS EN 61000-3-3	4%	3,3	3%	3,3% 500ms	4%	3,3	3%	3,3% 500ms	1,0	0,65	
									-		
Test impedance	R			0,4	Ω			XI	0,25	Ω	

Power Quality. DC injection.						
Test level power [%]	20	50	75	100		
Recorded value [mA]	3,7	2,94	0,85	4,78		
Recorded value [%]	0,03	0,02	0,01	0,08		
Limit [%]	0,25	0,25	0,25	0,25		

Appendix C Type Test Verification Report

Extract from test report according to the Engineering Recommendation G98/1

Nr. 14TH0397-G98/1-4 0

Fault level Contribution.					
For a directly coup	For a Inverter SSEG				
Parameter	Symbol	Value	Time after fault	Volts [V]	Amps [A]
Peak Short Circuit current	Ip	N/A	20ms	28,56	11,68
Initial Value of aperiodic current	А	N/A	100ms	28,43	11,85
Initial symmetrical short-circuit current*	l _k	N/A	250ms	28,44	11,78
Decaying (aperiodic) component of short circuit current*	i _{DC}	N/A	500ms	28,48	11,75
Reactance/Resistance Ratio of source*	X/R	N/A	Time to Trip [s]	2,517	In seconds

For rotating machines and linear piston machines the test should produce a 0s – 2s plot of the short circuit current as seen at the Generating Unit terminals.

^{*} Values for these parameters should be provided where the short circuit duration is sufficiently long to enable interpolation of the plot.

Self Monitoring – Solid state switching.	N/A
It has been verified that in the event of the solid state switching device failing to disconnect the Generating Unit, the voltage on the output side of the switching device is reduced to a value below 50 volts within 0,5 seconds.	N/A

Note. Unit do not provide solid state switching relays. In case the semiconductor bridge is switched off, then the voltage on the output drops to 0. In this case the relays on the output will also open (Functional safety of the internal automatic disconnection device according to VDE 0126-100).

Logic Interface (input port) Required by paragraph 11.1.3	Р
Confirm that an input port is provided and can be used to shut down the module.	Yes