

BREAKING THE 21% EFFICIENCY BARRIER

Q.ANTUM DUO Z Technology with zero gap cell layout boosts module efficiency up to 21.5%.

THE MOST THOROUGH TESTING PROGRAMME IN THE INDUSTRY

Q CELLS is the first solar module manufacturer to pass the most comprehensive quality programme in the industry: The new "Quality Controlled PV" of the independent certification institute TÜV Rheinland.

INNOVATIVE ALL-WEATHER TECHNOLOGY

Optimal yields, whatever the weather with excellent low-light and temperature behaviour.

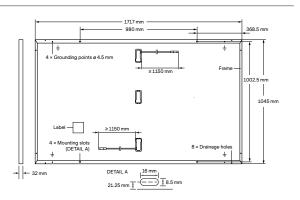
ENDURING HIGH PERFORMANCE

Long-term yield security with Anti LID Technology, Anti PID Technology¹, Hot-Spot Protect and Traceable Quality Tra.Q™.

EXTREME WEATHER RATING

High-tech aluminium alloy frame, certified for high snow (5400 Pa) and wind loads (4000 Pa).

A RELIABLE INVESTMENT


Inclusive 12-year product warranty and 25-year linear performance warranty².

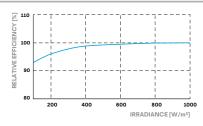
- $^{\rm 1}$ APT test conditions according to IEC/TS 62804-1:2015, method A (–1500 V, 96 h)
- 2 See data sheet on rear for further information.

THE IDEAL SOLUTION FOR:

ELECTRICAL CHARACTERISTICS

POWER CLASS			360	365	370	375	380
MINIMUM PERFORMANCE AT STA	ANDARD TEST CONDITION	ONS, STC¹ (F	OWER TOLERANCE	+5W/-0W)			
Power at MPP¹	P _{MPP}	[W]	360	365	370	375	380
Short Circuit Current ¹	I _{sc}	[A]	11.24	11.27	11.31	11.34	11.37
Open Circuit Voltage ¹	V _{oc}	[V]	41.20	41.23	41.26	41.30	41.33
Current at MPP	I _{MPP}	[A]	10.62	10.68	10.75	10.81	10.87
Voltage at MPP	V_{MPP}	[V]	33.89	34.16	34.43	34.69	34.95
Efficiency ¹	η	[%]	≥20.1	≥20.3	≥20.6	≥20.9	≥21.2
MINIMUM PERFORMANCE AT NO	RMAL OPERATING CON	IDITIONS, N	MOT ²				
Power at MPP	P _{MPP}	[W]	270.1	273.8	277.6	281.3	285.1
§ Short Circuit Current	I _{sc}	[A]	9.06	9.08	9.11	9.14	9.16
Open Circuit Voltage	V _{oc}	[V]	38.85	38.88	38.91	38.95	38.98
E Current at MPP	I _{MPP}	[A]	8.34	8.40	8.46	8.51	8.57
Voltage at MPP	V _{MPP}	[V]	32.37	32.60	32.83	33.05	33.28
Open Circuit Voltage Current at MPP	V _{OC}	[V] [A]	38.85 8.34	38.88 8.40	38.91 8.46	38.95 8.51	

 $^1\text{Measurement tolerances P}_{\text{MPP}} \pm 3\%; I_{\text{SC}}; V_{\text{OC}} \pm 5\% \text{ at STC}; 1000 \text{W/m}^2, 25 \pm 2\text{°C}, \text{AM } 1.5 \text{ according to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{NMOT, spectrum AM } 1.5 \text{ according to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{NMOT, spectrum AM } 1.5 \text{ according to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{NMOT, spectrum AM } 1.5 \text{ according to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{NMOT, spectrum AM } 1.5 \text{ according to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{NMOT, spectrum AM } 1.5 \text{ according to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{NMOT, spectrum AM } 1.5 \text{ according } 1$


Q CELLS PERFORMANCE WARRANTY

| 100

At least 98% of nominal power during first year. Thereafter max. 0.5% degradation per year. At least 93.5% of nominal power up to 10 years. At least 86% of nominal power up to 25 years.

All data within measurement tolerances. Full warranties in accordance with the warranty terms of the Q CELLS sales organisation of your respective country.

PERFORMANCE AT LOW IRRADIANCE

Typical module performance under low irradiance conditions in comparison to STC conditions (25 °C, 1000 W/m²).

TEMPERATURE COEFFICIENTS							
Temperature Coefficient of I _{SC}	α	[%/K]	+0.04	Temperature Coefficient of Voc	β	[%/K]	-0.27
Temperature Coefficient of P _{MPP}	γ	[%/K]	-0.34	Nominal Module Operating Temperature	NMOT	[°C]	43±3

PROPERTIES FOR SYSTEM DESIGN

Maximum System Voltage	V_{SYS}	[V]	1000	PV module classification	Class II
Maximum Reverse Current	I _R	[A]	20	Fire Rating based on ANSI/UL 61730	C/TYPE 2
Max. Design Load, Push / Pull		[Pa]	3600/2660	Permitted Module Temperature	-40°C - +85°C
Max. Test Load, Push / Pull		[Pa]	5400/4000	on Continuous Duty	

QUALIFICATIONS AND CERTIFICATES

Quality Controlled PV - TÜV Rheinland; IEC 61.215:2016; IEC 61.730:2016. This data sheet complies with DIN EN 50380. QCPV Certification ongoing.

Note: Installation instructions must be followed. See the installation and operating manual or contact our technical service department for further information on approved installation and use of this product.

Hanwha Q CELLS GmbH

 $Sonnenallee 17-21, 06766 \ Bitterfeld-Wolfen, Germany \ | \ \textbf{TEL} + 49 \ (0)3494 \ 66 \ 99-23444 \ | \ \textbf{FAX} + 49 \ (0)3494 \ 66 \ 99-23000 \ | \ \textbf{EMAIL} \ sales@q-cells.com \ | \ \textbf{WEB} \ www.q-cells.com \ | \ \textbf{WeB} \ ww.q-cells.com \ | \ \textbf{WeB} \ www.q-cells.com \ | \ \textbf{WeB} \ ww.q-cells.com \ | \ \textbf{WeB$

